FarmBox Foods Joins the International Phytobiomes Alliance

FarmBox Foods has joined the International Alliance for Phytobiomes Research as a sponsoring partner and is set to participate in groundbreaking studies that will examine sustainable food production.

The Phytobiomes Alliance facilitates and coordinates national and international research projects on phytobiomes to accelerate the sustainable production of food, feed, and fiber for all. The term “Phytobiome” refers to a plant growing in a specific environment (a biome), and all the geophysical and biological components that interact with this plant.

Colorado-based FarmBox Foods takes upcycled shipping containers and transforms them into controlled-climate container farms in which mushrooms, leafy greens, culinary herbs, micro greens, peppers, fodder, and other plants can be sustainably grown. This ground-breaking production solution provides an efficient way for local communities to grow healthy food, with low energy and water usage.

“We are thrilled to have FarmBox Foods join the Alliance,” said Kellye Eversole, the Alliance Executive Director.“Their innovative container farms are a perfect example of a phytobiome. FarmBox Foods’ expertise will be an invaluable addition to our scientific Coordinating Committee, helping us to advance our understanding of the various components impacting plant production in a closed environment as well as in the field. FarmBox Foods is also pioneering the production of livestock fodder in containers and we look forward to working with them to find plant/microbe-based solutions to challenges facing the livestock industry, such as the need to reduce methane production, increase overall livestock health, and improve feed efficiency.”

Joseph Cammack, FarmBox Foods Executive Vice President, will be joining the Alliance Coordinating Committee. This Committee identifies research, resource and technology gaps, establishes priorities, and develops strategic plans to achieve Alliance goals. Cammack will also be joining the Controlled Environment Agriculture (CEA) Working Group that is tasked with identifying major CEA challenges that could be addressed by phytobiomes research.

“The work that the Phytobiomes Alliance is doing is critically important as our world population surges and sustainable food production becomes more of a priority,” said Cammack. “We are excited to be involved in research that helps overcome challenges in our space and strengthens our industry as a whole.”

Over the next decades, understanding entire systems of phytobiomes will be critical to ensuring sustainable global food security in the context of population growth, climate change, the necessity to preserve biodiversity and natural resources, while maintaining or enhancing grower profitability. The Phytobiomes Alliance is working on addressing these challenges by establishing a foundation of knowledge on how phytobiome components interact and affect each other.

Innovating and Advancing Through Diversity

The word “diversity” has taken on new meaning and greater significance in recent years, with businesses incorporating goals related to diversity and inclusion into their operations. But what does it really mean, and how is it influencing the trajectory of certain industries?

While some corporations pay lip-service to the idea and implement strategies simply to check a box, its role in CEA (controlled-environment agriculture) is outsized, and there’s widespread recognition that paying closer attention to ensuring diversity in all aspects can be an asset throughout the indoor ag community via job creation, food security, education and bridging long-standing equity gaps.

A diverse workforce, for example, brings together individuals with different backgrounds and experiences, bringing fresh and unique ideas and solutions to the table. This results in increased adaptability, and a broader range of perspectives, which can undoubtedly drive business growth and success while making a positive impact.

Varied backgrounds can help identify potential risks and opportunities that may have otherwise been overlooked. Diverse teams are also more likely to engage in constructive debates and discussions, leading to more well-rounded decisions. To take it a step further, employees today seek inclusive work environments where they feel valued and respected, and such environments are more likely to result in higher levels of employee engagement and retention. In turn, those employees are also more likely to be motivated, loyal, and committed to the success of the business.

When FarmBox Foods was in its infancy, it recognized the value of bringing different perspectives to its board room, and hired Derrick Holmes, who serves as the company’s chief diversity officer. His role, in part, is to help guide our strategies and establish closer ties with communities that have traditionally been underserved and underrepresented. Providing those communities with access to nutritious food has been at the forefront of FarmBox’s business plan; the company recognizes that providing something as fundamental as food security allows a community to thrive in other ways. This is something the company wants to be a part of.

As a privately-owned company, FarmBox has flexibility to pursue projects that it feels will have generational impacts, even if they’re not as lucrative as other projects. Each individual project is meaningful in its own way, and it would be foolish to conduct operations with a one-size-fits-all approach. The technology that FarmBox Foods has developed has a unique ability to transform communities and bridge the wealth gaps that persist in the U.S. and elsewhere. Deploying container farms where they’re needed most is, in FarmBox’s estimation, not only good for business, but good for the world.

Educating Future Generations Using Innovation, Hands-On Learning

Educating Future Generations Using Innovation, Hands-On Learning

GSSM 4

Is there any greater gift than bestowing life-changing knowledge to younger generations?

For schools that focus on science, technology, engineering and math — or those that simply think outside the box when it comes to how they educate their students — it’s a no-brainer. The trend of implementing curriculums that emphasize hands-on learning is on an upward trajectory, and it shows no signs of slowing.

The Governor’s School of Science and Mathematics in South Carolina is a prime example of how to promote greater interest in learning among all students, including those who struggle in a traditional, straight-out-of-the-textbook setting. The high school recently began growing in a Vertical Hydroponic Farm made by FarmBox Foods that will serve as an interactive classroom for years to come. It’s housed inside an upcycled shipping container that’s been outfitted with all of the plumbing, electrical components and sensor technology needed to grow food.

Oftentimes, engagement is the key that unlocks the door to improved attentiveness, and producing something tangible hammers home the potential impacts. When a student is able to hold, say, a fresh head of lettuce that was grown via ingenuity, it can spark something greater: intense motivation to learn more. They suddenly — and satisfyingly — have used both existing and newfound knowledge of science and technology to grow fresh, nutritious food, perhaps for those who face hunger in their community. The students can literally hold the real-world impact in their hands.

GSSM’s Hydroponic Research Lab, however, isn’t necessarily centered on what it can produce, but how it produces, and, perhaps more importantly, why. It’s a venue for all-encompassing lessons in everything from civics and social responsibility to inventing new indoor farming techniques and creating avenues for environmental stewardship that previously didn’t exist. The educational promise is boundless, as are the practical applications that result.

In many respects, encouraging initial failure provides interdisciplinary opportunities for critical thinking and problem solving. GSSM’s students will have the ability to experiment with different controlled environments, study the research findings, and help answer questions about its effects on the agricultural community in its region, state and beyond. The lab will also help students to develop and standardize hydroponic research protocols for model plants used in plant science, plants of interest and plants beneficial to the area.

“The GSSM Hydroponic Research Lab provides unprecedented opportunities for students to engage in meaningful research on issues of worldwide significance right here on the GSSM campus in Hartsville, SC,” said GSSM Director of Research and Inquiry, Dr. Josh Witten. “Because this lab represents a unique research resource, it will also be a platform for GSSM students, faculty, and staff to collaborate with researchers beyond our campus. These innovative and immersive experiences are a hallmark of the GSSM education, which prepares students to become the problem solvers of tomorrow.”

The container farm contains elements of — and applications for — biology, chemistry, environmental science, engineering, computer science, robotics and economics, and is ‘being used as a teaching tool to engage their creativity,” the school said.

Creating a curriculum

Within the next 1-2 years, FarmBox Foods plans to roll out a curriculum specific to each controlled-climate farm it manufactures. The Colorado company is fortunate to be surrounded by educators of all types who have offered to contribute their expertise to the endeavor, largely because they can see the enormous potential. The goal is to create plug-and-play lesson plans that fit with current science and technology curriculums.

User-friendly automation within the Vertical Hydroponic Farm puts control in the hands of the students and teachers. For example, they can tweak the watering schedule or crank up the humidity and witness first-hand its effects on the plants, and learn precisely why it has such a big influence on the growing process. They can also explore how plants that historically haven’t been able to grow in low humidity can survive.

Higher learning

One of FarmBox Foods’ prototype hydroponic container farms was delivered to the campus of Delaware State University in Fall 2022. Consider for a moment all of the different academic disciplines and tracks that a single farm can touch, from marketing and business development to mechanics and horticulture. 

“We have a lot of interested clients looking for ag-tech solutions to bring to schools,” said Michael Choi, owner of Ponix, which equips indoor farms with specialized software. “It offers a compelling story for schools — how they can work with the community, and offer things like workforce training. It’s how you program around it.”

Choi, who sold the used farm to Delaware State University, said they will use it for both food security and educational purposes.

“I’ve been working with a network of schools for many years, and that particular school wanted to move forward quickly,” he said.

Valor Christian High School, in Highlands Ranch, Colo., has a project-based learning environment that is helping to lead the next generation of agriculturists to the greener pastures of the future.

The Applied STEM Program, led by director Rick Russon, enables students to put into practice what they learn in the classroom, preparing them for successful careers in a number of industries, including agriculture. Members of Valor’s agriculture club, in particular, have an infectious enthusiasm for ideas that combine brain power with a desire to make a positive impact on the world, and it’s already leading to groundbreaking results. For their capstone project, Russon and the club members built a four-tube vertical hydroponic unit using prototype parts donated by FarmBox Foods.

The Applied STEM Program is aiming to modify the four-tube hydroponic system and build several models to bring them into food deserts to feed people in need. Valor Christian sends nearly 40 teams throughout the world each year on missions, and Russon’s hope is that they can help deploy a workable system in areas with little arable land and few natural resources.

The Valor-based vertical hydroponic setup continues to draw interest from students and faculty who want to grow their own farm-fresh greens and help others learn the science behind the hydroponic growing process.

By the numbers

  • The farms are housed inside an insulated, 40-foot-long shipping container
  • A Vertical Hydroponic Farm — or VHF — produces 200-250 lbs. of veggies each week; a Gourmet Mushroom Farm yields around 400 lbs. of mushrooms per week
  • The farms have a 320-square-foot footprint
  • A Vertical Hydroponic Farm can grow approximately 8,000 plants in various stages of growth simultaneously (4,100 in the grow walls, 3,800+ in the seed table)
  • Because of its ability to capture, filter and recycle water, the Vertical Hydroponic Farm uses around 5 gallons of water per day
  • The VHF yields the equivalent of approximately 2.5 acres of farmland annually
  • The VHF grows peppers, grape/cherry tomatoes, microgreens, tree seedlings, as well as a variety of leafy greens, like lettuce, kale, cabbage and culinary herbs
  • Estimated labor required for a VHF is 15-20 hours per week. Labor for the Gourmet Mushroom Farm is about 30 hours per week

CORE Electric, FarmBox Foods announce partnership to grow trees for reforestation​

CORE Electric, FarmBox Foods announce partnership to grow trees for reforestation

A groundbreaking reforestation program launched by CORE Electric Cooperative and FarmBox Foods is using innovation to achieve a new form of environmental stewardship.

 

On Nov. 17, the electricity provider finalized a contract with FarmBox Foods, a Colorado-based manufacturer of controlled-climate farms, to grow trees in a Vertical Hydroponic Farm housed inside an upcycled, insulated shipping container.  CORE plans to use the trees to rehabilitate forests within its service area, which covers 5,000 square miles along Colorado’s Front Range.

 

“CORE’s partnership with FarmBox to support reforestation efforts in our service territory advances our work to be responsible stewards of the environment,” said Jeff Baudier, CORE Electric Cooperative CEO. “As a member-owned cooperative, protecting the natural resources of the communities where we live and serve is a cornerstone of our mission.”

 

In the first three years of the initiative, CORE plans to plant 15,000 blue spruces and ponderosa pines, both native species in Colorado.FarmBox Foods began successfully growing tree seedlings and saplings in the controlled-climate container farm in 2021, but the Vertical Hydroponic Farm purchased by CORE is the first to be solely dedicated to tree propagation.  Under the terms of the agreement, FarmBox Foods will operate the indoor tree farm at its home base in Sedalia and conduct research on drought resistance, nutrient dosing, lighting and other growing parameters.  The trees will then be transferred to hoop houses to allow the root systems to grow out before being planted.

 

“We’re really excited to see the positive impacts that will come from this unique partnership,” said Rusty Walker, CEO of FarmBox Foods. “CORE recognizes its role in helping to maintain healthy forests and I think this is going to be a model for other electric cooperatives going forward.”

 

The partnership allows CORE to “play its part in keeping its service territory beautiful for generations of future members,” the cooperative said in a statement.  To keep powerline corridors safe and free of potential hazards, CORE responsibly removes vegetation.  It’s putting a renewed focus on rehabilitating areas that have been damaged by wildfires.

 

“This first-of-its-kind program exemplifies how CORE is leading the way to a more sustainable future and our mission of innovation,” said Amber King, communications manager for CORE.

 

CORE Electric, which supplies the energy that powers FarmBox Foods’ operating farms that grow nutritious produce in Sedalia, will work with local partners to identify areas in need of reforestation.

Evolving Labor Trends Turn Mushroom Farming into Viable and Profitable Option​

Evolving Labor Trends Turn Mushroom Farming into Viable & Profitable Option

Chestnut mushrooms in a fruiting chamber

Nearly everyone has heard about recent workplace trends said to have arisen from the pandemic, like “quiet quitting,” when in fact people have been re-assessing their priorities and career choices for years in an effort to strike a more equitable work-life balance.

 

There’s generally more awareness about workers leaving their jobs in pursuit of something more fulfilling. Finding a passion and turning it into a lucrative source of income is the goal, and turnkey solutions like container-based mushroom farming are receiving more recognition and acceptance as a low-overhead avenue to success.

 

Starting a career in farming might sound daunting, but a Denver-area company called FarmBox Foods makes it accessible, even for those with no prior experience in agriculture. FarmBox Foods manufactures high-yield Gourmet Mushroom Farms inside insulated shipping containers, allowing people to grow popular varieties of mushrooms year-round and create multiple revenue streams in the process. The privately owned company also trains you how to do it.

 

It’s a viable solution for those who don’t have millions of dollars to invest in a new business venture. There’s no need to buy farmland (the containers have a footprint of 320 square-feet) and all of the necessary equipment for start-to-finish mushroom cultivation is included. And customers can even finance the container farms, which generate more than $1.2 million in profits over their projected 10-year lifespan.

 

The farms open up opportunities for sustainable food production in places that currently lack access to fresh food, including islands. More than 90 percent of food consumed on islands is imported, which increases costs, reduces quality and results in food miles that impact the environment.

 

“It’s something that people can really pour their heart and soul into,” said Rusty Walker, CEO of FarmBox Foods. “It’s not just a new career. It allows you to live and work where you want to and get a good return on your investment while doing something that gives back to the community.”

 

The controlled-climate mushroom farms use a digital control panel and a network of sensors to monitor and automatically adjust conditions inside the farm for optimal growing. The farms can grow nearly 20 varieties of mushrooms, including lion’s mane, oysters, king trumpets and reishi, and yield around 400 pounds of mushrooms per week.

 

To learn more about purchasing or leasing a Gourmet Mushroom Farm, or to schedule an in-person or virtual tour, visit farmboxfoods.com/gourmet-mushroom-farm/.

FarmBox Foods launches indoor farm that grows livestock feed

Trays of hydroponic fodder growing in an indoor farm.

FarmBox Foods LLC is excited to announce the official launch of its Hydroponic Fodder Farm.

The company hosted a public open house on Sept. 27 at our home base in Sedalia, CO. Guided tours of the new indoor farm — the third product line offered by FarmBox Foods — were provided. Attendees also received a tour of the company’s other tech-assisted, containerized farms: the Vertical Hydroponic Farm and Gourmet Mushroom Farm.

What exactly is fodder? It’s a nutrient-dense hay that’s used as a dietary supplement for horses, cows, pigs, goats, chickens, sheep, rabbits and alpacas.

(Want to learn more about FarmBox Foods? Watch our July appearance on ABC News here)

By growing fodder on site year-round, farmers and ranchers can avoid supply chain disruptions, sourcing issues and spikes in hay prices. The controlled-climate farms provide a reliable, hyperlocal source of fresh food while shielding the barley fodder from weather and climate impacts, including drought, heat waves, freezes and floods. The farms are housed inside upcycled, insulated shipping containers outfitted with plumbing, electrical and sensors to control conditions inside. The 320 square-foot farms also capture, filter and recycle water for maximum water efficiency. 

Protein-rich fodder improves the overall health of livestock, supplements hydration and adds weight to beef cattle. It also promotes the production of better-quality milk for dairy cows and goats, improves fertility rates, reduces the likelihood of illness, and decreases methane output because of its superior digestibility compared to traditional alfalfa hay.

Because barley fodder requires only a 7-day growth cycle, a staggered schedule allows farmers and ranchers to harvest around 880 pounds of fodder per day.

What makes FarmBox Foods a green-oriented company?

What makes FarmBox Foods a green-oriented company?

A cow eating hydroponic fodder

We use only upcycled shipping containers.
We give used, insulated shipping containers a new life: growing food at scale in areas that struggle with reliable cultivation and/or access. By outfitting them with the components to grow produce, the repurposed containers are kept out of landfills and scrap heaps.
 
The farms we build are designed to promote efficient water usage.
We capture, filter and reuse water in both our Hydroponic Fodder Farm and our Vertical Hydroponic Farm, which requires only about 5 gallons of water per day. Water is often lost to evaporation and transpiration in traditional farm settings. By recycling the water, our farms get the most out of every drop. In times of severe drought and diminishing water supplies, this efficiency is critically important. 
 
The farms were built to reduce energy usage associated with agricultural production.
Our Vertical Hydroponic Farm uses around 190 kwh per day, the energy equivalent of two loads of laundry. The Gourmet Mushroom Farm uses even less, drawing an average of only 80 kilowatt-hours of electricity each day. High-efficiency, low-energy LED lights are used in FarmBox containers to reduce energy consumption.
 
Reduced need for fossil fuels.
Every kilogram/pound of food waste has a corresponding waste factor for energy, labor, water, carbon emissions, etc. It takes a lot to get produce from point A to point B, including diesel fuel to power trucks and trains. Transporting goods across long distances could be a thing of the past, as our portable container farms enable people to grow food near the consumer, thereby reducing emissions and expenses. Hyper-local growing almost entirely removes the supply chain — and its ongoing issues — from the equation.
 
Indoor farms don’t require the use of pesticides.
Because our farms are enclosed, they’re protected from many of the variables that keep traditional farmers up at night, like drought, flooding, heat waves and hail. But it also prevents impacts from pests, and therefore, pesticides are not required in our farms. As a result, the water discharged from the Vertical Hydroponic Farms and Hydroponic Fodder Farms we build does not contribute to groundwater contamination.
 
Fodder consumption by livestock reduces methane output.
Barley fodder is easier to digest than traditional alfalfa hay and other nutritional supplements, and because of this, less methane is emitted into the atmosphere. We’re in the process of gathering more specific data to quantify the reduction of methane from different types of animals, and how that reduction corresponds with their respective intake of protein-rich fodder.
 
Growing near the consumer reduces the likelihood of food waste.
After being harvested, produce grown in traditional outdoor settings often spends a few days on trucks and in distribution centers before it arrives at the store. Hyperlocal growing helps fresh veggies arrive on consumers’ plates and in their refrigerators much sooner — often within 24 hours of being harvested. The produce maintains its shelf life, which provides a longer period of time to eat the food. This results in less food waste at the consumer level.
 
Our farms can run off solar power.
Anyone who wants to grow nutrient-dense food off-grid can do so by hooking their farm up to a small solar grid. 
 
Compost from our Gourmet Mushroom Farms helps promote soil health.
The spent substrate from FarmBox Foods’ GMF showroom model is donated to the local community to be used as nutrient-rich compost. The seedling pods and spent mushroom substrate can be used for further plant-growing compost once they are removed from the farms. The spent mushroom substrate, in particular, is quite sought after for this purpose. These eco-friendly by-products can also be incorporated into the soil, and the substrate will continue to grow mushrooms if properly managed.
 
Soil rejuvenation and less need for agricultural acreage.
Millions of acres of America’s traditionally fertile soil have been stripped of vital nutrients, and farmers are compelled to implement crop rotation and remediation steps like composting to regenerate agricultural land. A FarmBox occupies only 320 square-feet of space (they can also be stacked), does not need soil, and allows farmers to revitalize oft-used ag soil.
Furthermore, clear-cutting forests to make room for agriculture is not necessary for some crops. Farmers can utilize available vertical space to grow more food on a smaller footprint.

Rising food prices influenced by several factors

What is influencing the increase in food prices and what can be done about it?

Rising food prices influenced by several factors

a wall of hydroponically grown lettuce

A confluence of global events and circumstances have some experts painting a grim picture for populations that already face food insecurity.

Recent spikes in food, fuel and fertilizer prices could lead to “destabilization, starvation and mass migration on an unprecedented scale,” said David Beasley, head of the U.N. World Food Program.

A recent U.N. analysis shows that “a record 345 million acutely hungry people are marching to the brink of starvation.” That’s a 25-percent increase from 276 million at the start of 2022, before Russia invaded Ukraine in late February. The number stood at 135 million people before the COVID-19 pandemic in early 2020, according to an ABC News article.

The war in Ukraine is having a continuing ripple effect on the global food supply. Russia and Ukraine together export 28 percent of fertilizers made from nitrogen, phosphorous and potassium, according to Morgan Stanley. The limited global supply has sent prices into the stratosphere — in some cases doubling the cost — and there are fears that high costs or the lack of availability will result in farmers using less fertilizer, leading to lower yields of commodities that are already constrained. 

In early July, the Consumer Price Index report from the Bureau of Labor Statistics said that food prices in the U.S. increased 10.4 percent from June 2021 to June 2022.

Rising costs for any critical ingredient for running a farm — water, labor, fuel or fertilizer — translate to higher food prices. And when all four hit at the same time, disruption ensues, to the detriment of consumers, especially those who were already hanging on by a thread.

In all, worldwide experts fear crop yields will drop by 10-30 percent, and developing countries will be hardest hit.

The prevalence of “undernourishment” — when food consumption is insufficient to maintain an active and healthy life — continued to rise in 2021. The U.N.-commissioned report, “The State of Food Security and Nutrition in the World,” estimates that between 702 million and 828 million people faced hunger last year.

A grain shortage stemming from the Ukraine conflict is also driving up the cost of basic foods and other commodities, and corn and wheat are not getting out to the market because the Black Sea is closed. To top it off, drought conditions are crippling agricultural operations in several regions known for high output. 

There’s a dearth of issues to navigate. But as The Shelby Report points out, crises stoke innovation. Agricultural adaptation is being employed, including the use of hydroponic container farms housed in upcycled shipping containers. The controlled-climate farms allow for uninterrupted, decentralized growing year-round and provide a stable environment to ensure reliable yields. Smart irrigation systems are being used more than ever, and data is driving decision-making at unprecedented levels in order to maximize available resources. Responses to climate change vary by location and commodity. Learn more about how the USDA is assisting food producers.

FarmBox Foods makes appearance on ‘Good Morning America’

Good Morning America visited FarmBox Foods’ headquarters to explain how businesses and nonprofits are using technology to sustainably grow food near the consumer year-round.

GMA Visits FarmBox Foods to Talk ‘Farming Without Harming’


Good Morning America

Good Morning America visited FarmBox Foods’ headquarters to learn how businesses and nonprofits are using technology to sustainably grow food near the consumer.

ABC News Chief Meteorologist Ginger Zee spoke to FarmBox Foods CEO Rusty Walker June 20 about the company’s mission to build high-tech indoor farms that provide food security year-round for those without reliable access to nutrient-dense food. 

(Watch the GMA appearance here)

Zee also interviewed representatives from two FarmBox Foods customers, Natural Grocers® and Centura Health, about their use of Vertical Hydroponic Farms, which provide a hyperlocal source of fresh produce while reducing environmental impacts and unpredictability associated with traditional farming. The farms are housed inside upcycled, insulated shipping containers that are outfitted with plumbing, electrical and sensors to control conditions inside.

By growing food on site, the companies that use FarmBoxes are avoiding supply chain disruptions, reducing food sourcing costs, improving access, and helping to eliminate food waste because the veggies get to the plate much quicker. 

 

The controlled-climate container farms provide a perfect growing environment for the plants and shield them from weather and climate impacts, including drought, heat waves and flooding.

 

Natural Grocers is growing organic lettuce behind its store in Lakewood, Colo., mere steps from the display case, and plans to expand the program elsewhere. Centura Health, meanwhile, owns three Vertical Hydroponic Farms and uses them to produce food for hospital patients and visitors, and to provide nutritious produce to food banks in the communities they serve.

Adaptation Key to Stabilizing Food Prices

Every consumer knows that sticker shock at the grocery store is now a common occurrence.

Food price increases this year are expected to far exceed those observed in 2020 and 2021, according to the USDA’s Economic Research Service.

Every consumer knows that sticker shock at the grocery store is now a common occurrence. 

Food price increases this year are expected to far exceed those observed in 2020 and 2021, according to the USDA’s Economic Research Service.

Supply chain delays caused by, among other things, pandemic-related shutdowns, a truck driver shortage and a logjam at our nation’s ports were already causing issues with the U.S. food supply. Then, Russia’s invasion of Ukraine caused a ripple effect that we still see playing out globally. It has impacted fuel prices, food exports and the supply of fertilizer needed to maintain food production levels in places like Brazil, a top producer of goods like sugar and soybeans. Even avian flu is affecting the price of eggs and poultry.

The Consumer Price Index for all food in the U.S. increased 1 percent from March 2022 to April 2022, and food prices were 9.4 percent higher than in April 2021. 

It’s an inescapable phenomenon that’s disproportionately affecting those who were already struggling to feed their families. So when will it end? There are, of course, differing opinions on when or even if food prices will level out anytime soon.

The cost of fresh vegetables is expected to go up by 4.3 percent this year, the USDA says, a point that underscores the need to decentralize the production of certain veggies. Hyperlocal production of nutrient-dense food can help control costs, primarily because it eliminates fuel price fluctuations and supply chain delays from the equation. It also helps reduce the rate of food loss, because the veggies make their way to the fridges and plates of consumers much more quickly.

Having a localized level of control takes the power away from negative external influences, and places the power back in the hands of urban farmers, who can nimbly grow at scale using a combination of greenhouses, outdoor community gardens and containerized, tech-assisted farms. A container farm takes up 320 square-feet of space — or about 5 parking spaces — and can be placed anywhere there’s a reliable water supply and an electrical hookup.

Businesses that serve underprivileged communities can come together in the name of food security and provide these food production systems that operate in perpetuity and provide jobs and educational opportunities in the process. Although veggies comprise only a portion of the food consumed in America, it’s incremental changes like this that can move the needle in a direction that eases the burden on consumers.